Description
From Project Euler:In the 20x20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48The product of these numbers is 26 x 63 x 78 x 14 = 1,788,696.
What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 20x20 grid?
Solution
This is another one of those problems that is just very easy to brute force. We simply create a two dimensional array that will represent our grid.
class Problem011 GRID = [[ 8, 2,22,97,38,15, 0,40, 0,75, 4, 5, 7,78,52,12,50,77,91, 8], [49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48, 4,56,62, 0], [81,49,31,73,55,79,14,29,93,71,40,67,53,88,30, 3,49,13,36,65], [52,70,95,23, 4,60,11,42,69,24,68,56, 1,32,56,71,37, 2,36,91], [22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80], [24,47,32,60,99, 3,45, 2,44,75,33,53,78,36,84,20,35,17,12,50], [32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70], [67,26,20,68, 2,62,12,20,95,63,94,39,63, 8,40,91,66,49,94,21], [24,55,58, 5,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72], [21,36,23, 9,75, 0,76,44,20,45,35,14, 0,61,33,97,34,31,33,95], [78,17,53,28,22,75,31,67,15,94, 3,80, 4,62,16,14, 9,53,56,92], [16,39, 5,42,96,35,31,47,55,58,88,24, 0,17,54,24,36,29,85,57], [86,56, 0,48,35,71,89, 7, 5,44,44,37,44,60,21,58,51,54,17,58], [19,80,81,68, 5,94,47,69,28,73,92,13,86,52,17,77, 4,89,55,40], [ 4,52, 8,83,97,35,99,16, 7,97,57,32,16,26,26,79,33,27,98,66], [88,36,68,87,57,62,20,72, 3,46,33,67,46,55,12,32,63,93,53,69], [ 4,42,16,73,38,25,39,11,24,94,72,18, 8,46,29,32,40,62,76,36], [20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74, 4,36,16], [20,73,35,29,78,31,90, 1,74,31,49,71,48,86,81,16,23,57, 5,54], [ 1,70,54,71,83,51,54,69,16,92,33,48,61,43,52, 1,89,19,67,48]] end
We then generate all of the vertical, horizontal, and diagonal lines containing four numbers from the grid.
class Problem011 def get_lines result = [] GRID.length.times do |i| (GRID.length - 3).times do |j| result << [GRID[i][j + 0], GRID[i][j + 1], GRID[i][j + 2], GRID[i][j + 3]] result << [GRID[j + 0][i], GRID[j + 1][i], GRID[j + 2][i], GRID[j + 3][i]] end end (GRID.length - 3).times do |i| (GRID.length - 3).times do |j| result << [GRID[i + 0][j + 0], GRID[i + 1][j + 1], GRID[i + 2][j + 2], GRID[i + 3][j + 3]] result << [GRID[i + 0][GRID.length - j - 1], GRID[i + 1][GRID.length - j - 2], GRID[i + 2][GRID.length - j - 3], GRID[i + 3][GRID.length - j - 4]] end end return result end end
Finally we find the products of each of those four number combinations and get the largest one.
Problem011.new.get_lines.map { |ary| ary.reduce(1, :*) }.max
The full source and specifications can be seen on github. Next time, finding the first triangle number with over five hundred divisors.
No comments:
Post a Comment